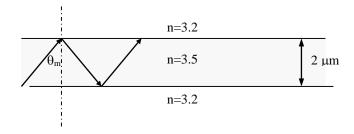
PHYC 564, Laser Physics II

Spring 2021

Homework #3, Due Wed. March 3, 2021 Instructor: M. Sheik-Bahae

1.

- (a) Find the transparency e-h carrier density (N_{tr}) required to just invert GaAs having E_g =1.43, m_e =0.07 m_0 and m_h =0.5 m_0 . Assume T=300K.
- (b) For a gain layer of d=1 μ m, calculate the steady-state current density (J_t) needed to sustain the above carrier density if the radiative recombination rate (given by BN_eN_h) is the dominating recombination mechanism where B \cong 2×10⁻¹⁰ cm³/sec. (Note: here N_e=N_h=N_{tr})
- (c) Find the peak value of the gain γ , its peak wavelength λ_{peak} , and the width of the gain $\Delta \lambda$, if the current density is increased to $2 \times J_t$.
- (d) Repeat (a) and (b) for T=77 K to appreciate the temperature dependence of the threshold current of semiconductor lasers.


2.

- (a) Derive an expression for the radiative recombination coefficient $B=R/N_{eh}^2$ at low injection carrier density limit (R is the radiative recombination rate) . Identify the temperature dependence. Estimate B for GaAs.
- (b) Derive an expression for the mean luminescence wavelength (λ_f), and plot λ_f / λ_g as a function of temperature for GaAs (Use low carrier injection approximation). ($\lambda_g = hc/E_g$)

Use van Roosbroeck-Shockley (reciprocity) relation for luminescence power spectrum:

$$S(v) = \frac{8\pi n^2 v^2}{c^2} \alpha_0(hv) \{ f_c(1 - f_v) \}$$
 and $R = BN^2 = \int S(v) dv$

- **3.** Consider a symmetric optical slab waveguide shown below.
 - (a) For λ_0 =1.5 μm (in free space), find the number of TE modes in this waveguide.
 - (b) What are the confinement factors (Γ) for TE_0 and TE_1 modes?

